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Cross Validation (CV)

Cross Validation (CV)

Consider

yi = x′iβ + ei =

p∑
j=1

xijβj + ei,

where β′ = (β1, . . . , βp) and ei are i.i.d. r.v.s with E(ei) = 0 and E(e2i ) = σ2 > 0.

Suppose βi = 0 for some i ∈ P = {1, . . . , p}.
We are interested in choosing the smallest true model

yi = x′i,α∗βα∗ + ei,

where α∗ = {i : βi 6= 0}, β′α∗ = (βi, i ∈ α∗) and x′i,α∗ = (xij , j ∈ α∗), among the
candidate models

E(y) ∈ C(Xα),

where y′ = (y1, . . . , yn), X′α = (xi,α, . . . ,xn,α) with x′i,α = (xij , j ∈ α), and α ∈ 2P.

1



Cross Validation, Monte Carlo Cross Validation, and Accumulated Prediction Errors: Asymptotic Properties

Cross Validation (CV)

Delete-nv-out CV (CV(nv))

Let (yi,xi), i = 1, . . . , n, be observations.

CV(nv) splits the data into two parts:

{(yi,xi), i ∈ s} and {(yi,xi), i ∈ sc},

where s and sc are subsets of N = {1, . . . , n} with s ∩ sc = ∅ and s ∪ sc = N.

The first part is referred to as the validation (testing) sample, whereas the
second part is referred to as the training sample.

Denote ](s) and ](sc) by nv and nc, respectively, noting that nv + nc = n.

The CV evaluates the performance of α using

Γ̂α,n(nv) =
1

nv
( n
nv

) ∑
All (s,sc) combinations

∑
i∈s

(yi − x′i,αβ̂α,sc )2

=
1

nv
( n
nv

) ∑
All (s,sc) combinations

‖ys − ŷα,sc‖2, (ŷα,sc = Xα,sβ̂α,sc )

where y′A = (yi, i ∈ A), A ⊆ N and β̂α,sc = (X′α,scXα,sc )−1X′α,scysc with

X′α,A = (xi,α, i ∈ A).
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Cross Validation (CV)

Some statistical properties of CV

Define Pα = Xα(X′αXα)−1X′α and Qα,A = Xα,A(X′αXα)−1X′α,A.

Fact 1

n−1
v ‖ys − ŷα,sc‖2 = n−1

v ‖(Inv −Qα,s)−1(ys −Xα,sβ̂α)‖2,

where Inv denotes the nv-dimensional identity matrix and

β̂α = (X′αXα)−1X′αy,

which is the least squares estimate of βα based on the ”full” data.
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Cross Validation (CV)

Proof

Since

(X′α,scXα,sc )−1 = (X′αXα −X′α,sXα,s)
−1,

by making use of

(A−B′B)−1 = A−1 +A−1B′(I −BA−1B′)−1BA−1, (1)

(I: identity matrix of suitable dimension)

we obtain

ŷα,sc = Xα,sβ̂α,sc

= Xα,sβ̂α +Qα,s(I −Qα,s)−1Xα,sβ̂α −Qα,sys −Qα,s(I −Qα,s)−1Qα,sys,

and hence

ys −Xα,sβ̂α,sc = (I −Qα,s)−1(ys −Xα,sβ̂α).

This completes the proof.

Remark

By Fact 1, we have

Γ̂α,n(1) = n−1
n∑
i=1

{(1− wiα)−1(yi − x′i,αβ̂α)}2, → Delete-1-out CV (conventional CV)

where wiα = (Pα)ii, the ith diagonal element of Pα.
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Cross Validation (CV)

Theorem 1

Assume

X′X

n
−→
n→∞

R, a positive definite matrix, (2)

where X′ = (x1, . . . ,xn), and

max
1≤i≤n

wiα −→
n→∞

0 for any α ∈ 2P. (3)

Then

(1)

Γ̂α,n(1) = σ2 +
1

n
β′X′(I − Pα)Xβ + op(1),

(I : n-dimensional identity matrix)

if α is an incorrect model (namely α∗ − α 6= ∅),

(2)

Γ̂α,n(1) = n−1e′e+
2dασ2

n
−

1

n
e′Pαe+ op(n−1),

if α is a correct model (α∗ − α = ∅), where dα = ](α) and e′ = (e1, . . . , en).
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Cross Validation (CV)

Proof

Since

(1− wiα)2 = 1 + 2wiα +O(w2
iα),

where O(·) denotes a bound uniform over 1 ≤ i ≤ n, it holds that

Γ̂α,n(1) =
1

n

n∑
i=1

γ2iα +
1

n

n∑
i=1

(2wiα +O(w2
iα))γ2i,α ≡ (I) + (II),

where γi,α = yi − x′i,αβ̂α.

If α is incorrect, then

(I) = n−1y′(I − Pα)y

= n−1(e′ + β′X′)(I − Pα)(Xβ + e)

= n−1e′(I − Pα)e+ 2n−1e′(I − Pα)Xβ + n−1β′X′(I − Pα)Xβ

why?
= σ2 + n−1β′X′(I − Pα)Xβ + op(1),

and (II) = op(1). Then (1) follows.
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Cross Validation (CV)

If α is correct, then

(I) = n−1e′(I − Pα)e,

and

(II) = n−1
n∑
i=1

(2wiα +O(w2
iα))(ei − x′i,α(β̂α − βα))2

why?
=

2

n

n∑
i=1

wiαe
2
i + op(n−1)

=
2

n

n∑
i=1

wiασ
2 +

2

n

n∑
i=1

wiα(e2i − σ2) + op(n−1)

why?
=

2dασ2

n
+ op(1).

This completes the proof.

Corollary 1

Let

α̂ = argminα∈2P Γ̂α,n(1).

Then limn→∞ P (α∗ − α̂ = ∅) = 1, but limn→∞ P (α̂ = α∗) is in general less than 1.
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Cross Validation (CV)

Notation

b =
( n
nv

)
Bnv = {s : s ⊆ N and ](s) = nv}
Pα,s = Xα,s(X′α,sXα,s)−1X′α,s

R̂α,s = 1
nv

∑
t∈s xt,αx

′
t,α

R̂α,sc = 1
nc

∑
t∈sc xt,αx

′
t,α

γα,s = ys −Xα,sβ̂α
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Cross Validation (CV)

Then, Fact 1 yields

Γ̂α,n(nv) =
1

nvb

∑
s∈Bnv

γ
′
α,s(Inv −Qα,s)

−1
(Inv −Qα,s)

−1
γα,s = (I) + (II) + · · ·+ (VI), (4)

where

(I) =
1

nvb

∑
s∈Bnv

γ
′
α,sγα,s, (II) =

n2
v

n2
c

1

nvb

∑
s∈Bnv

γ
′
α,sPα,sγα,s,

(III) =
1

n2
c

1

nvb

∑
s∈Bnv

γ
′
α,sXα,s(R̂

−1
α,sc − R̂

−1
α,s)X

′
α,sXα,s(R̂

−1
α,sc − R̂

−1
α,s)X

′
α,sγα,s,

(IV) = 2
nv

nc

1

nvb

∑
s∈Bnv

γ
′
α,sPα,sγα,s,

(V) =
2

nc

1

nvb

∑
s∈Bnv

γ
′
α,sXα,s(R̂

−1
α,sc − R̂

−1
α,s)X

′
α,sγα,s,

(VI) =
2nv

n2
c

1

nvb

∑
s∈Bnv

γ
′
α,sPα,sXα,s(R̂

−1
α,sc − R̂

−1
α,s)X

′
α,sγα,s. (Pα,sXα,s = Xα,s)

Hint

Using (1), one gets

(Inv −Qα,s)
−1

= Inv +
nv

nc
Pα,s +

1

nc
Xα,s(R̂

−1
α,sc − R̂

−1
α,s)X

′
α,s.

9



Cross Validation, Monte Carlo Cross Validation, and Accumulated Prediction Errors: Asymptotic Properties

Cross Validation (CV)

Theorem 2

Assume the same assumptions as in Theorem 1. Assume also that

lim
n→∞

max
s∈Bnv

‖R̂s − R̂sc‖ = 0, (5)

where R̂A = 1
](A)

∑
t∈A xtx

′
t with A ⊆ N. Suppose

nv

n
→ 1 and nc = n− nv →∞. (6)

Then

(i) For α∗ − α 6= ∅,

Γ̂α,n(nv) = n−1e′e+ n−1β′X′(I − Pα)Xβ + op(1) +Rn, (7)

where Rn is a non-negative random variable.

(ii) For α∗ − α = ∅,

Γ̂α,n(nv) = n−1e′e+
dασ2

nc
+ op(n−1

c ). (8)

(iii) limn→∞ P (α̂nv = α∗) = 1, where α̂nv = argminα∈2P Γ̂α,n(nv).
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Cross Validation (CV)

Proof

We begin by considering the case of α∗ − α = ∅.
We will first show that

Γ̂α,n(nv) = (I) + (II)(1 + o(1)), (9)

via proving

|(K)| = (II)o(1), (10)

where K = III, IV, V, and VI.
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Cross Validation (CV)

To show (10) holds with K = VI, note that

(VI) ≤ 2{(A) + (B)}, (11)

where

(A) =
nv

n2
c

1

nvb

∣∣∣∣∣∣
∑

s∈Bnv

γ
′
α,sXα,s(R̂

−1
α,sc − R̂

−1
α,s)(R̂α,s − R̂α,sc )R̂

−1
α,sX

′
α,sγα,s

∣∣∣∣∣∣ ,
(B) =

nv

n2
c

1

nvb

∣∣∣∣∣∣
∑

s∈Bnv

γ
′
α,sXα,sR̂

−1
α,s(R̂α,s − R̂α,sc )R̂

−1
α,sX

′
α,sγα,s

∣∣∣∣∣∣ .
In addition,

(B)
why?

≤
n2
v

n2
c

1

nvb
max
s∈Bnv

‖R̂α,s − R̂α,sc‖ max
s∈Bnv

‖R̂−1
α,s‖

∑
s∈Bnv

γ
′
α,sPα,sγα,s, (12)

and

(A)
why?

≤
n2
v

n2
c

1

nvb
max
s∈Bnv

‖R̂α,s − R̂α,sc‖2 max
s∈Bnv

‖R̂−1
α,s‖ max

s∈Bnv
‖R̂−1

α,sc‖
∑

s∈Bnv

γ
′
α,sPα,sγα,s. (13)
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Cross Validation (CV)

By (2), we have

max
s∈Bnv

‖R̂−1
α,s‖ = O(1),

which, together with (5), and (11)–(13), yields

|(VI)| = (II)o(1). (14)

Similarly, it can be shown that

|(V)| = (II)o(1). (15)

Since nv
nc
→∞, it is easy to see that

|(IV)| = (IV) = (II)o(1). ((IV) is non-negative) (16)

13



Cross Validation, Monte Carlo Cross Validation, and Accumulated Prediction Errors: Asymptotic Properties

Cross Validation (CV)

Now, for (III), we have

|(III)| ≤
nv

n2
c

1

nvb

∣∣∣∣∣∣
∑

s∈Bnv

γ′α,sXα,sR̂
−1
α,sc (R̂α,s − R̂α,sc )R̂−1

α,sc (R̂α,s − R̂α,sc )R̂−1
α,sX

′
α,sγα,s

∣∣∣∣∣∣
≤
nv

n2
c

1

nvb

∣∣∣∣∣∣
∑

s∈Bnv

γ′α,sXα,sR̂
−1
α,s(R̂α,s − R̂α,sc )R̂−1

α,sc (R̂α,s − R̂α,sc )R̂−1
α,sX

′
α,sγα,s

∣∣∣∣∣∣
+
nv

n2
c

1

nvb

∣∣∣∣∣∣
∑

s∈Bnv

γ′α,sXα,sR̂
−1
α,s(R̂α,s − R̂α,sc )R̂−1

α,sc

(R̂α,s − R̂α,sc )R̂−1
α,sc (R̂α,s − R̂α,sc )R̂−1

α,sX
′
α,sγα,s

∣∣∣ .
This and an argument similar to that used to prove (14) give

|(III)| = (II)o(1). (17)

Hence, (10) follows from (14)–(17). Now, by an argument similar to that use to prove (14)
again, we have

(II) =
n2
v

n2
c

1

nvb

∑
s∈Bnv

γ′α,sQα,sγα,s + (II)o(1). (18)

14



Cross Validation, Monte Carlo Cross Validation, and Accumulated Prediction Errors: Asymptotic Properties

Cross Validation (CV)

Moreover,

n2
v

n2
c

1

nvb

∑
s∈Bnv

γ′α,sQα,sγα,s

=
n2
v

n2
c

1

nvb

∑
s∈Bnv

∑
(i,j)∈s×s

Pα,ijγi,αγj,α ([Pα,ij ]i,j∈s = Pα)

=
n2
v

n2
c

1

nvb

∑
s∈Bnv

∑
i∈s

Pα,iiγ
2
i,α +

n2
v

n2
c

1

nvb

∑
s∈Bnv

∑
(i,j)∈s×s,i 6=j

Pα,ijγi,αγj,α (Pα,ii = wiα)

why?
=

n2
v

n2
c

1

n

n∑
i=1

wiαγ
2
i,α −

n2
v

n2
c

nv − 1

n− 1

1

n

n∑
i=1

wiαγ
2
i,α

=
n2
v

n2
c

1

n

nc

n− 1

n∑
i=1

wiασ
2 +O

(
1

nc

n∑
i=1

wiα(γ2i,α − σ2)

)
why?
=

dασ2

nc
+ op(n−1

c ). (19)
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Cross Validation (CV)

By (18) and (19), we have

(II) =
dασ2

nc
+ op(n−1

c ). (20)

Moreover,

(I) =
1

n
y′(I − Pα)y =

1

n
e′(I − Pα)e = n−1e′e+Op(n−1). (21)

In view of (20), (21) and (9), the desired conclusion (8) follows.
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Cross Validation (CV)

To show (7), note that (4) implies (why?)

Γ̂α,n(nv) ≥
1

nvb

∑
s∈Bnv

γ′α,sγα,s =
1

n
y′(I − Pα)y. (22)

Since α∗ − α 6= ∅,

1

n
y′(I − Pα)y = n−1e′e+ n−1β′X′(I − Pα)Xβ + 2n−1β′X′(I − Pα)e

= n−1e′e+ n−1β′X′(I − Pα)Xβ + op(1), (23)

and hence (7) is ensured by (22) and (23).

Finally, (iii) is an immediate consequence of (i) and (ii).
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Monte Carlo Cross Validation (MCCV)

Monte Carlo Cross Validation (MCCV)

Let si
i.i.d.∼ U(Bnv ), where Bnv is defined in the note for CV.

Define MCCV as follows:

Γ̂MCCV
α,n =

1

nvb

b∑
i=1

‖ysi − ŷα,sci ‖
2,

where b is the number of Monte Carlo simulations used to calculate CV.

1
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Monte Carlo Cross Validation (MCCV)

Theorem 3

Assume the same assumptions as in Theorem 1. Suppose

max
1≤j≤b

∥∥∥∥∥∥ 1

nv

∑
i∈sj

xix
′
i −

1

nc

∑
i/∈sj

xix
′
i

∥∥∥∥∥∥ = op(1), (24)

and

Ee41 <∞,
n2

bn2
c

→ 0,
nv

n
→ 1, and nc →∞. (25)

Then,

(i) for α∗ − α 6= ∅,

Γ̂MCCV
α,n =

1

nvb

b∑
i=1

e′siesi +
1

n
β′X′(I − Pα)Xβ + op(1) +Rn,

where e′si = (ej , j ∈ si) and Rn is some positive r.v.,

(ii) for α∗ − α = ∅,

Γ̂MCCV
α,n =

1

nvb

b∑
i=1

e′siesi + n−1
c dασ

2 + op(n−1
c ),

(iii) limn→∞ P (α̂MCCV = α∗) = 1, where α̂MCCV = argminα∈2P Γ̂MCCV
α,n .
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Monte Carlo Cross Validation (MCCV)

Proof

By an argument similar to that used to prove (9) and (18) in the note for CV, one has for
α∗ − α = ∅,

Γ̂MCCV
α,n =

1

nvb

b∑
i=1

γ′α,siγα,si +
n2
v

n2
c

1

nvb

b∑
i=1

γ′α,siPα,siγα,si (1 + op(1)), (26)

and

n2
v

n2
c

1

nvb

b∑
i=1

γ′α,siPα,siγα,si (1 + op(1)) =
n2
v

n2
c

1

nvb

b∑
i=1

γ′α,siQα,siγα,si . (27)
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Monte Carlo Cross Validation (MCCV)

In addition, by (19) in the note for CV,

E

[
n2
v

n2
c

1

nvb

b∑
i=1

γ′α,siQα,siγα,si

∣∣∣∣∣ (y1,x1), . . . , (yn,xn)

]

=
n2
v

n2
c

1

nv
E[γ′α,s1Qα,s1γα,s1 |(y1,x1), . . . , (yn,xn)]

why?
=

n2
v

n2
c

1

nv

1( n
nv

) ∑
s∈Bnv

γ′α,sQα,sγα,s

=
dασ2

nc
+ op(n−1

c ),

implying

E[ncVn|Fn]
pr.−−→ dασ

2, (28)

where

Vn =
n2
v

n2
c

1

nvb

b∑
i=1

γ′α,siQα,siγα,si

and Fn is the σ-field generated by (y1,x1), . . . , (yn,xn).

4
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Monte Carlo Cross Validation (MCCV)

We also have

V ar(ncVn|Fn) =
n2
v

n2
c

1

b2

b∑
i=1

V ar(γ′α,siQα,siγα,si |Fn)

≤
n2
v

n2
c

1

b
E((γ′α,s1Qα,s1γα,s1 )2|Fn)

=
n2
v

n2
c

1

b

1( n
nv

) ∑
s∈Bnv

(γ′α,sQα,sγα,s)
2.

Since Ee41 <∞, we have

E((γ′α,sQα,sγα,s)
2) ≤ C <∞ for all s ∈ Bnv , (C : some positive constant)

which, together with
n2
v
n2
c

1
b
→ 0, yields

V ar[ncVn|Fn]
pr.−−→ 0. (29)

5
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Monte Carlo Cross Validation (MCCV)

It is shown in the Appendix that

(28) + (29) implies ncVn
pr.−−→ dασ

2. (30)

In view of (26), (27) and (30), (ii) is proved once

1

nvb

b∑
i=1

γ′α,siγα,si =
1

nvb

b∑
i=1

e′siesi + op(n−1
c ). (31)

To show (31), note first that

γα,si = esi −Xα,si (β̂α − βα),

yielding

1

nvb

b∑
i=1

γ′α,siγα,si =
1

nvb

b∑
i=1

e′siesi −
2

nvb

b∑
i=1

(β̂α − βα)′X′α,siesi

+(β̂α − βα)′

(
1

nvb

b∑
i=1

X′α,siXα,si

)
(β̂α − βα). (32)
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Monte Carlo Cross Validation (MCCV)

Since ∣∣∣∣∣ 1

nvb

b∑
i=1

(β̂α − βα)′X′α,siesi

∣∣∣∣∣ ≤ ‖β̂α − βα‖

∥∥∥∥∥ 1

nvb

b∑
i=1

X′α,siesi

∥∥∥∥∥ ,
E

(∥∥∥∥∥ 1

nvb

b∑
i=1

X′α,siesi

∥∥∥∥∥
)

≤
1

nvb

b∑
i=1

E(‖X′α,siesi‖)

=
1

nv
E[E(‖X′α,s1es1‖|Fn)]

=
1

nv
E

 1( n
nv

) ∑
s∈Bnv

‖X′α,ses‖


why?
= O(n

− 1
2

v ),

and

‖β̂α − βα‖ = Op(n−
1
2 ),

one has

2

nvb

b∑
i=1

(β̂α − βα)′X′α,siesi
why?
= Op(n−1). (33)

7
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Monte Carlo Cross Validation (MCCV)

Similarly, it can be shown that

(β̂α − βα)′

(
1

nvb

b∑
i=1

X′α,siXα,si

)
(β̂α − βα) = Op(n−1). (34)

Combining (32)–(34), we obtain the desired conclusion (31). Thus, (ii) is proved.

The proof of (i) is left as an exercise.

Finally, we note that (iii) is an immediate consequence of (i) & (ii).

8
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Monte Carlo Cross Validation (MCCV)

Appendix: the proof of (30)

To prove (30), we need the so-called conditional Chebyshev’s inequality, which is stated as

follows.

Conditional Chebyshev’s inequality

Let X be a positive r.v., ε > 0, and F be a σ-field. Then

P (X > ε|F) ≤
E(X|F)

ε
a.s. (almost surely). (35)

Proof

Let D ∈ F . Then, by the definition of conditional expectation,∫
D
P (X > ε|F) dP =

∫
D
E(IX>ε |F) dP =

∫
D
IX>ε dP ≤

∫
D

X

ε
IX>ε dP

≤
∫
D

X

ε
dP

=

∫
D

E(X|F)

ε
dP.

Hence (35) follows.

9
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Monte Carlo Cross Validation (MCCV)

Now, (30) is ensured by the following fact.

Fact

Let {Xn} and {Fn} be sequences of r.v.s and σ-field, respectively. If

V ar(Xn|Fn)
pr.−−→ 0, (36)

and

E(Xn|Fn)
pr.−−→ C (a constant), (37)

then

Xn
pr.−−→ C. (38)

Proof

By the conditional Chebyshev’s inequality and (36), it holds that for any ε > 0

P (|Xn − E(Xn|Fn)| > ε|Fn) ≤
V ar(Xn|Fn)

ε2
pr.−−→ 0,

which, together with the dominated convergence theorem, yields

Xn − E(Xn|Fn)
pr.−−→ 0. (why?)

This and (37) give (38).

10
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Accumulated Prediction Errors (APE)

Consider the following stochastic regression model

yt =

p∑
i=1

βixti + εt, (39)

where εt
i.i.d.∼ (0, σ2) and xt = (xt1, . . . , xtp)′ is Ft−1-measurable, meaning that xt can be

completely decided by the information collected at time t− 1.

Example 1: Autoregressive (AR) models

yt = a1yt−1 + · · ·+ apyt−p + εt,

where A(z) = 1− a1z − a2z2 − · · · − apzp 6= 0, ∀|z| ≤ 1.

Example 2: Autoregressive exogenous models

yt = a1yt−1 + · · ·+ apyt−p + η1Zt1 + · · ·+ ηqZtq + εt,

where A(z) 6= 0, ∀|z| ≤ 1, and (εt, Zt1, . . . , Ztq) are i.i.d..

1
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Accumulated Prediction Errors (APE)

Let α and α∗ be defined as in the note for CV.

We are interested in choosing α∗ based on APE, which assigns α to a positive value:

APEα =
n∑

t=M+1

(yt − x′t,αβ̂t−1,α)2,

where

β̂t,α =

 t∑
j=1

xj,αx
′
j,α

−1 t∑
j=1

xj,αyj


and M is some integer to be specified later.

2
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Accumulated Prediction Errors (APE)

Theorem 4

Assume

1

n

n∑
t=1

xtx
′
t
pr.−−→ R (p.d.), E|ε1|q1 <∞ for some large q1, (40)

and

max
1≤t≤n,1≤i≤p

E|xti|q2 <∞ for some large q2, E‖
√
t(β̂t − β)‖q3 < k̄ <∞, (41)

for all t ≥M and some large q3.

(i) For α∗ − α = ∅,

APEα =
n∑

t=M+1

ε2t + σ2dα logn+ op(logn),

(ii) For α∗ − α 6= ∅,

APEα ≥
n∑

t=M+1

ε2t + ∆n(α) +Op(1),

where 1
n

∆n(α)
pr.−−→ γ > 0.

(iii) limn→∞ P (α̂APE = α∗) = 1, where α̂APE = argminα∈2PAPEα.

3
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Accumulated Prediction Errors (APE)

Proof

We first prove (i). Define

Vt,α =

(
t∑
i=1

xi,αx
′
i,α

)−1

, Qt,α =

 t∑
j=1

xj,αεj

′ Vt,α
 t∑
j=1

xj,αεj

 ,

and dt,α = x′t,αVt,αxt,α.

By making use of

Vt,α = Vt−1,α −
Vt−1,αxt,αx′t,αVt−1,α

1 + x′t,αVt−1,αxt,α

and
1

1 + x′t,αVt−1,αxt,α
= 1− dt,α,

one gets

n∑
t=M+1

x′t,αVt−1,α

t−1∑
j=1

xj,αεj

2

(1− dt,α) +Qn,α −QM,α

=
n∑

t=M+1

dt,αε
2
t + 2

n∑
t=M+1

x′t,α(β̂t−1,α − βα)εt(1− dt,α). (42)

4



Cross Validation, Monte Carlo Cross Validation, and Accumulated Prediction Errors: Asymptotic Properties

Accumulated Prediction Errors (APE)

Moreover, by (40) and (41), it can be shown that

n∑
t=M+1

x′t,αVt−1,α

t−1∑
j=1

xj,αεj

2

dt,α = Op(1), (43)

Qn = Op(1), QM = Op(1), (44)
n∑

t=M+1

x′t,α(β̂t−1,α − βα)εt(1− dt,α) = op(logn). (45)

Also, we have

n∑
t=M+1

dt,αε
2
t =

n∑
t=M+1

dt,ασ
2 +

n∑
t=M+1

dt,α(ε2t − σ2)

= σ2dα logn+ op(logn) +Op(1). (46)

5
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Accumulated Prediction Errors (APE)

Consequently, (i) follows from (42)–(46), and the fact that

APEα =
n∑

t=M+1

(εt − x′t,α(β̂t−1,α − βα))2

=
n∑

t=M+1

ε2t − 2
n∑

t=M+1

(β̂t−1,α − βα)xt,αεt +
n∑

t=M+1

[x′t,α(β̂t−1,α − βα)]2

=
n∑

t=M+1

ε2t +
n∑

t=M+1

[x′t,α(β̂t−1,α − βα)]2 + op(logn).

To show (ii), note that by Theorem 2.1 of Wei (1992), we have

n∑
t=M+1

(yt − x′t,αβ̂t−1,α)2 ≥
n∑
t=1

(yt − x′t,αβ̂n,α)2 −
M∑
t=1

(yt − x′t,αβ̂M,α)2

= y′(I − Pα)y +Op(1),

which implies (ii) (why?).

Now, (iii) follows directly from (i) and (ii).
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